
Vectorization and Re-Use Issues

P. Sam Johnson

National Institute of Technology Karnataka (NITK)
Surathkal, Mangalore, India

P. Sam Johnson Vectorization and Re-Use Issues 1/42

Introduction

The matrix manipulations discussed in this book are mostly built upon dot
products and saxpy operations. Vector pipeline computers are able to
perform vector operations such as these very fast because of special
hardware that is able to exploit the fact that a vector operation is a very
regular sequence of scalar operations.

Whether or not high performance is extracted from such a computer
depends upon the length of the vector operands and a number of other
factors that pertain to the movement of data such as vector stride, the
number of vector loads and stores, and the level of data re-use. Our goal
is to build a useful awareness of these issues.

We are not trying to build a comprehensive model of vector pipeline
computing that might be used to predict performance. We simply want to
identify the kind of thinking that goes into the design of an effective
vector pipeline code. We do not mention any particular machine. The
literature is filled with case studies.
P. Sam Johnson Vectorization and Re-Use Issues 2/42

Pipelining Arithmetic Operations

The primary reason why vector computers are fast has to do with
pipelining. The concept of pipelining is best understood by making an
analogy to assembly line production. Suppose the assembly of an
individual automobile requires one minute at each of sixty workstations
along an assembly line. If the line is well staffed and able to initiate the
assembly of a new car every minute, then 1000 cars can be produced from
scratch in about 1000 + 60 = 1060minutes. For a work order of this size
the line has an effective “vector speed” of 1000/1060 automobiles per
minute. On the other hand, if the assembly line is understaffed and a new
assembly can be initiated just once an hour, then 1000 hours are required
to produce 1000 cars. In this case the line has an effective “scalar speed”
of 1/60th automobile per minute.

So it is with a pipelined vector operation such as the vector add
z = x + y . The scalar operations zi = xi + yi are the cars. The number of
elements is the size of the work order.

P. Sam Johnson Vectorization and Re-Use Issues 3/42

Pipelining Arithmetic Operations (Contd...)

If the start-to-finish time required for each zi is τ , then a pipelined, length
n vector add could be completed in time much less than nτ . This gives
vector speed. Without the pipelining, the vector computation would
proceed at a scalar rate and would approximately require time nτ for
completion.

Let us see how a sequence of floating point operations can be pipelined.
Floating point operations usually require several cycles to complete.

P. Sam Johnson Vectorization and Re-Use Issues 4/42

Pipelining Arithmetic Operations (Contd...)

For example, a 3-cycle addition of two scalars x and y may proceed as in
the following figure. To visualize the operation, continue with the above
metaphor

and think of the addition unit as an assembly line with three “work
stations”.

The input scalars x and y proceed along the assembly line spending one
cycle at each of three stations. The sum z emerges after three cycles.

P. Sam Johnson Vectorization and Re-Use Issues 5/42

Pipelining Arithmetic Operations (Contd...)

Note that when a single, “free standing” addition is performed, only one
of the three stations is active during the computation.

Now consider a vector addition z = x + y . With pipelining, the x and y
vectors are streamed through the addition unit. Once the pipeline is filled
and steady state reached, a zi is produced every cycle. In the above figure,
we depict what the pipeline might look like once this steady state is
achieved. In this case, vector speed is about three times scalar speed
because the time for an individual add is three cycles.

P. Sam Johnson Vectorization and Re-Use Issues 6/42

Vector Operations

A vector pipeline computer comes with a repertoire of vector instructions,
such as vector add, vector multiply, vector scale, dot product, and saxpy.
We assume for clarity that these operations take place in vector registers.
Vectors travel between the registers and memory by means of vector load
and vector store instructions.

An important attribute of a vector processor is the length of its vector
registers which we designate by vL. A length-n vector operation must be
broken down into subvector operations of length vL or less.

P. Sam Johnson Vectorization and Re-Use Issues 7/42

Vector Operations (Contd...)

Here is how such a partitioning might be managed in the case of a vector
addition z = x + y where x and y are n-vectors:

first = 1
while first ≤ n

last = min n, first + vL − 1
Vector load x(first : last).
Vector load y(first : last).
Vector add: z(first : last) = x(first : last) + y(first : last).
Vector store z(first : last).
first = last + 1

end

A reasonable compiler for a vector computer would automatically generate
these vector instructions from a programmer specified z = x + y command.

P. Sam Johnson Vectorization and Re-Use Issues 8/42

The Vector Length Issue

Suppose the pipeline for the vector operation op takes τop cycles to “set
up.” Assume that one component of the result is obtained per cycle once
the pipeline is filled. The time required to perform an n-dimensional op is
then given by

Top(n) = (τop + n)µ n ≤ vL

where µ is the cycle time and vL is the length of the vector hardware.

If the vectors to be combined are longer than the vector hardware length,
then as we have seen the overall vector operation must be broken down
into hardware-manageable chunks.

P. Sam Johnson Vectorization and Re-Use Issues 9/42

The Vector Length Issue

Thus, if
n = n1vL + n0 0 ≤ n0 < vL,

then we assume that

Top(n) =

{
n1(τop + vL)µ n0 = 0

(n1(τop + vL) + τop + n0)µ n0 6= 0

specifies the overall time required to perform a length-n op. This simplifies
to

Top(n) = (n + τopceil(n/vL))µ

where ceil(α) is the smallest integer such that α ≤ ceil(α).

P. Sam Johnson Vectorization and Re-Use Issues 10/42

The Vector Length Issue (Contd...)

If ρ flops per component are involved, then the effective rate of
computation for general n is given by

Rop(n) =
ρn

Top(n)
=
ρ

µ

1

1 +
τop
n ceil

(
n
vL

) .
(If µ is in seconds, then Rop is in flops per second.) The asymptotic rate
of performance is given by

lim
n→∞

Rop(n) =
1

1 +
τop
vL

ρ

µ
.

P. Sam Johnson Vectorization and Re-Use Issues 11/42

The Vector Length Issue (Contd...)

As a way of assessing how serious the start-up overhead is for a vector
operation, Hockney and Jesshope (1988) define the quantity n1/2 to be
the smallest n for which half of peak performance is achieved, i.e.,

ρn1/2

Top(n1/2)
=

1

2

ρ

µ
.

Machines that have big n1/2 factors do not perform well on short vector
operations.

P. Sam Johnson Vectorization and Re-Use Issues 12/42

The Vector Length Issue (Contd...)

Let us see what the above performance model says about the design of the
matrix multiply update C = AB + C where A ∈ Rm×p, B ∈ Rp×n, and
C ∈ Rm×n. Recall that there are six possible versions of the conventional
algorithm and they correspond to the six possible loop orderings of

for i=1:m
for j=1:n

for k=1:p
C (i , j) = A(i , k)B(k , j) + C (i , j)

end
end

end

P. Sam Johnson Vectorization and Re-Use Issues 13/42

The Vector Length Issue (Contd...)

This is the ijk variant and its innermost loop oversees a length-p dot
product. Thus, our performance model predicts that

Tijk = mnp + mn · ceil(p/vL)τdot

cycles are required. A similar analysis for each of the other variants leads
to the following table:

Variant Cycles

ijk mnp + mn · τdot(p/vL)
jik mnp + mn · τdot(p/vL)
ikj mnp + mp · τsax(n/vL)
jki mnp + np · τsax(m/vL)
kij mnp + mp · τsax(n/vL)
kji mnp + np · τsax(m/vL)

P. Sam Johnson Vectorization and Re-Use Issues 14/42

The Vector Length Issue (Contd...)

We make a few observations based upon some elementary integer
arithmetic manipulation.

Assume that τsax and τdot are roughly equal. If m, n, and p are all less
than vL, then the most efficient variants will have the longest inner loops.

If m, n, and p are much bigger than vL, then the distinction between the
six options is small.

The “layout” of a vector operand in memory often has a bearing on
execution speed. The key factor is stride. The stride of a stored floating
point vector is the distance (in logical memory locations) between the
vector’s components.

P. Sam Johnson Vectorization and Re-Use Issues 15/42

The Stride Issue

Accessing a row in a two-dimensional Fortran array is not a unit stride
operation because arrays are stored by column. In C , it is just the opposite
as matrices are stored by row. Nonunit stride vector operations may
interfere with the pipelining capability of a computer degrading
performance.

To clarify the stride issue we consider how the six variants of matrix
multiplication “pull up” data from the A,B, and C matrices in the inner
loop. This is where the vector calculation occurs (dot product or saxpy)
and there are three possibilities:

P. Sam Johnson Vectorization and Re-Use Issues 16/42

The Stride Issue (Contd...)

jki or kji :
for i = 1 : m

C (i , j) = C (i , j) + A(i , k)B(k , j)

end

ikj or kij :
for j = 1 : n

C (i , j) = C (i , j) + A(i , k)B(k , j)

end

ijk or jik:
for k = 1 : p

C (i , j) = C (i , j) + A(i , k)B(k , j)

end

P. Sam Johnson Vectorization and Re-Use Issues 17/42

The Stride Issue (Contd...)

Here is a table that specifies the A,B, and C strides associated with each
of these possibilities:

Variant A Stride B Stride C Stride

jki or kji Unit 0 Unit
ikj or kij 0 Non-Unit Non-Unit
ijk or jik Non-Unit Unit 0

Storage in column-major order is assumed. A stride of zero means that
only a single array element is accessed in the inner loop. From the stride
point of view, it is clear that we should favor the jki and kji variants. This
may not coincide with a preference that is based on vector length
considerations. Dilemmas of this type are typical in high performance
computing. One goal (maximize vector length) can conflict with another
(impose unit stride).

P. Sam Johnson Vectorization and Re-Use Issues 18/42

The Stride Issue (Contd...)

Sometimes a vector stride/vector length conflict can s be resolved through
the intelligent choice of data structures. Consider the gaxpy y = Ax + y
where A ∈ Rn×n is symmetric. Assume that n ≤ vL for simplicity. If A is
stored conventionally and Algorithm 1.1.4 is used, then the central
computation entails n, unit stride saxpy’s each having length n:

for j=1:n
y = A(:, j)x(j) + y

end

Our simple execution model tells us that

T1 = n(τsax + n)

cycles are required.

P. Sam Johnson Vectorization and Re-Use Issues 19/42

The Stride Issue (Contd...)

We introduced the lower triangular storage scheme for symmetric matrices
and obtained this version of the gaxpy:

for j = 1 : n
for i = 1 : j − 1

y(i) = A.vec((i − 1)n − i(i − 1)/2 + j)x(j) + y(i)

end
for i = j : n

y(i) = A.vec((j − 1)n − j(j − 1)/2 + i)x(j) + y(i)

end
end

P. Sam Johnson Vectorization and Re-Use Issues 20/42

The Stride Issue (Contd...)

Notice that the first i-loop does not define a unit stride saxpy.

If we assume that a length n, nonunit stride saxpy is equivalent to n
unit-length saxpys (a worst case scenario), then this implementation
involves

T2 = n
(n

2
τsax + n

)
cycles.

P. Sam Johnson Vectorization and Re-Use Issues 21/42

The Stride Issue (Contd...)

We developed the store-by-diagonal version:

for i=1:n
y(i) = A.diag(i)x(i) + y(i)

end
for k = 1 : n − 1

t = nk − k(k − 1)/2
{y = D(A, k)x + y}
for i = 1 : n − k

y(i) = A.diag(i + t)x(i + k) + y(i)

end
{y = D(A, k)T x + y}
for i = 1 : n − k

y(i + k) = A.diag(i + t)x(i) + y(i + k)

end
end

P. Sam Johnson Vectorization and Re-Use Issues 22/42

The Stride Issue (Contd...)

In this case both inner loops define a unit stride vector multiply (vm) and
our model of execution predicts

T3 = n(2τvm + n)

cycles.

The example shows how the choice of data structure can effect the stride
attributes of an algorithm. Store by diagonal seems attractive because it
represents the matrix compactly and has unit stride.

However, a careful which-is-best analysis would depend upon the values of
τsax and τvm and the precise penalties for nonunit stride computation and
excess storage.

The complexity of the situation would call for careful benchmarking.

P. Sam Johnson Vectorization and Re-Use Issues 23/42

Thinking About Data Motion

Another important attribute of a matrix algorithm concerns the actual
volume of data that has to be moved around during execution. Matrices
sit in memory but the computations that involve their entries take place in
functional units.

The control of memory traffic is crucial to performance in many computers.

To continue with the factory metaphor used at the beginning of this
section: Can we keep the superfast arithmetic units busy with enough
deliveries of matrix data and can we ship the results back to memory fast
enough to avoid backlog?

P. Sam Johnson Vectorization and Re-Use Issues 24/42

Thinking About Data Motion (Contd...)

The following figure depicts the typical situation in an advanced
uniprocessor environment. Details vary from machine

to machine, but two “axioms” prevail :
Each level in the hierarchy has a limited capacity and for economic reasons this capacity is
usually smaller as we ascend the hierarchy.

There is a cost, sometimes relatively great, associated with the moving of data between
two levels in the hierarchy.

The design of an efficient matrix algorithm requires careful thinking about
the flow of data in between the various levels of storage. The vector touch
and data re-use issues are important in this regard.

P. Sam Johnson Vectorization and Re-Use Issues 25/42

The Vector Touch Issue

In many advanced computers, data is moved around in chunks, e.g.,
vectors.

The time required to read or write a vector to memory is comparable to
the time required to engage the vector in a dot product or saxpy.

Thus, the number of vector touches associated with a matrix code is a
very important statistic. By a “vector touch” we mean either a vector load
or store.

P. Sam Johnson Vectorization and Re-Use Issues 26/42

The Vector Touch Issue

Let’s count the number of vector touches associated with an m-by-n outer
product. Assume that m = m1vL and n = n1vL where vL is the vector
hardware length.

In this environment, the outer product update A = A + xyT would be
arranged as follows:

for α = 1 : m1

i = (α− 1)vL + 1 : αvL
for β = 1 : n1

j = (β − 1)vL + 1 : βvL
A(i , j) = A(i , j) + x(i)y(j)T

end
end

P. Sam Johnson Vectorization and Re-Use Issues 27/42

The Vector Touch Issue (Contd...)

Each column of the submatrix A(i , j) must be loaded, updated, and then
stored. Not forgetting to account for the vector touches associated with x
and y we see that approximately

m1∑
α=1

1 +

n1∑
β=1

(1 + 2vL)

 ≈ 2m1n

vector touches are required. (Low order terms do not contribute to the
analysis.)

P. Sam Johnson Vectorization and Re-Use Issues 28/42

The Vector Touch Issue (Contd...)

Now consider the gaxpy update y = Ax + y where y ∈ Rm, x ∈ Rn and
A ∈ Rm×n. Breaking this computation down into segments of length vL
gives

for α = 1 : m1

i = (α− 1)vL + 1 : αvL
for β : 1 : n1

j = (β − 1)vL + 1 : βvL
y(i) = y(i) + A(i , j)x(j)

end
end

P. Sam Johnson Vectorization and Re-Use Issues 29/42

The Vector Touch Issue (Contd...)

Again, each column of submatrix A(i , j) must be read but the only writing
to memory involves subvectors of y . Thus, the number of vector touches
for an m-by-n gaxpy is

m1∑
α=1

2 +

n1∑
β=1

(1 + vL)

 ≈ m1n.

This is half the number required by an identically-sized the outer product.
Thus, if a computation can be arranged in terms of either outer products
or gaxpys, then the former is preferable from the vector touch standpoint.

P. Sam Johnson Vectorization and Re-Use Issues 30/42

Blocking and Re-Use

A cache is a small high-speed memory situated in between the functional
units and main memory. Cache utilization colors performance because it
has a direct bearing upon how data flows in between the functional units
and the lower levels of memory.

To illustrate this we consider the computation of the matrix multiply
update C = AB + C where A,B,C ∈ Rn×n reside in main memory1.

All data must pass through the cache on its way to the functional units
where the floating point computations are carried out. If the cache is small
and n is big, then the update must be broken down into smaller parts so
that the cache can “gracefully” process the flow of data.

1The discussion which follows would also apply if the matrices were on a disk and
needed to be brought into main memory.
P. Sam Johnson Vectorization and Re-Use Issues 31/42

Blocking and Re-Use (Contd...)

One strategy is to block the B and C matrices,

B = []B1 , . . . , BN

` `
C = []C1 , . . . , CN

` `

where we assume that n = `N. From the expansion

Cα = ABα + Cα =
n∑

k=1

A(:, k)Bα(k, :) + Cα

we obtain the following computational framework:

for α = 1 : N
Load Bα and Cα into cache.
for k=1:n

Load A(:, k) into cache and update Cα:
Cα = A(:, k)Bα(k, :) + Cα

end
Store Cα in main memory.

end

P. Sam Johnson Vectorization and Re-Use Issues 32/42

Blocking and Re-Use (Contd...)

Note that if M is the cache size measured in floating point words, then we
must have

2n`+ n ≤ M. (1)

Let Γ1 be the number of floating point numbers that flow (in either
direction) between cache and main memory.

Note that every entry in B is loaded into cache once, every entry in C is
loaded into cache once and stored back in main memory once, and every
entry in A is loaded into cache N = n/` times. It follows that

Γ1 = 3n2 +
n3

`
.

P. Sam Johnson Vectorization and Re-Use Issues 33/42

Blocking and Re-Use (Contd...)

In the interest of keeping data motion to a minimum, we choose ` to be as
large as possible subject to the constraint (1.4.1). We therefore set

` ≈ 1

2

(
M

n
− 1

)
obtaining

Γ1 ≈ 3n2 +
2n4

M − n
.

(We use “≈” to emphasize the approximate nature of our analysis.) If
cache is large enough to house the entire B and C matrices with room left
over for a column of A, then ` = n and Γ1 = 4n2. At the other extreme, if
we can just fit three columns in cache, then ` = 1 and Γ1 ≈ n3.

P. Sam Johnson Vectorization and Re-Use Issues 34/42

Blocking and Re-Use (Contd...)

Now let us regard A = (Aαβ), B = (Bαβ), and C = (Cαβ) as N-by-N block matrices with
uniform block size ` = n/N. With this blocking the computation of

Cαβ =
N∑

γ=1

AαγBγβ α = 1 : N, β = 1 : N

can be arranged as follows:

for α = 1 : N
for β = 1 : N

Load Cαβ into cache.
for γ = 1 : N

Load Aαγ and Bγβ into cache.
Cαβ = Cαβ + AαγBγβ

end
Store Cαβ as in main memory.

end
end

P. Sam Johnson Vectorization and Re-Use Issues 35/42

Blocking and Re-Use (Contd...)

In this case the main memory/cache traffic sums to

Γ2 = 2n2 +
2n3

`

because each entry in A and B is loaded N = n/` times and each entry in
C is loaded once and stored once. We can minimize this by choosing ` to
be as large as possible subject to the constraint that three blocks fit in
cache, i.e.,

3`2 ≤ M

Setting ` ≈
√

M/3 gives

Γ2 ≈ 2n2 + 2n3

√
3

M
.

P. Sam Johnson Vectorization and Re-Use Issues 36/42

Blocking and Re-Use (Contd...)

A manipulation shows that

Γ1

Γ2
≈

3n2 + 2n4

M−n

2n2 + 2n3
√

3
M

≥
3 + 2n2

M

2 + 2
√

3
√

n2

M

.

The key quantity here is n2/M, the ratio of matrix size (in floating point
words) to cache size. As this ratio grows the we find that

Γ1

Γ2
≈ n√

3M

showing that the second blocking strategy is superior from the standpoint
of data motion to and from the cache. The fundamental conclusion to be
reached from all of this is that blocking effects data motion.

P. Sam Johnson Vectorization and Re-Use Issues 37/42

Block Matrix Data Structures

We conclude this section with a discussion about block data structures. A
programming language that supports two-dimensional arrays must have a
convention for storing such a structure in memory. For example, Fortran
stores two-dimensional arrays in column major order. This means that the
entries within a column are contiguous in memory. Thus, if 24 storage
locations are allocated for A ∈ R4×6, then in traditional store-by-column
format the matrix entries are “lined up” in memory as depicted in the
following figure. In other words, if A ∈ Rm×n is stored in v(1 : mn), then
we identify A(i , j) with v((j − 1)m + i).

P. Sam Johnson Vectorization and Re-Use Issues 38/42

Block Matrix Data Structures

For algorithms that access matrix data by column this is a good
arrangement since the column entries are contiguous in memory.

In certain block matrix algorithms it is sometimes useful to store matrices
by blocks rather than by column. Suppose, for example, that the matrix A
above is a 2-by-3 block matrix with 2-by-2 blocks. In a store-by-column
block scheme with store-by-column within each block, the 24 entries are
arranged in memory as shown in the above figure. This data structure can
be attractive for block algorithms because the entries within a given block
are contiguous in memory.
P. Sam Johnson Vectorization and Re-Use Issues 39/42

Problems

1. Consider the matrix product D = ABC where A ∈ Rm×r
’

B ∈ Rr×n

and C ∈ Rn×q. Assume that all the matrices are stored by column
and that the time required to execute a unit-stride saxpy operation of
length k is of the form t(k) = (L + k)µ where L is a constant and µ
is the cycle time. Based on this model, when is it more economical to
compute D as D = (AB)C instead of as D = A(BC)? Assume that
all matrix multiplies are done using the jki , (gaxpy) algorithm.

2. What is the total time spent in jki variant on the saxpy operations
assuming that all the matrices are stored by column and that the time
required to execute a unit-stride saxpy operation of length k is of the
form t(k) = (L + k)µ where L is a constant and µ is the cycle time?
Specialize the algorithm so that it efficiently handles the case when A
and B are n-by-n and upper triangular. Does it follow that the
triangular implementation is six times faster as the flop count
suggests?

P. Sam Johnson Vectorization and Re-Use Issues 40/42

Problems (Contd...)

3. Give an algorithm for computing C = ATBA where A and B are
n-by-n and B is symmetric. Arrays should be accessed in unit stride
fashion within all innermost loops.

4. Suppose A ∈ Rm×n is stored by column in A.col(1 : mn). Assume
that m = `1M and n = `2N and that we regard A as an M-by-N
block matrix with `1-by-`2 blocks. Given i , j , α, and β that satisfy
1 ≤ i ≤ `1, 1 ≤ j ≤ `2, 1 ≤ α ≤ M, and 1 ≤ β ≤ N determine k so
that A.col(k) houses the (i , j) entry of Aαβ. Give an algorithm that
overwrites A.col with A stored by block an in Figure 1.4.5. How big
of a work array is required?

P. Sam Johnson Vectorization and Re-Use Issues 41/42

Reference Books

1. Gene H. Golub and Charles F. Van Loan, Matrix Computations, 3rd
Edition, Hindustan book agency, 2007.

2. A.R. Gourlay and G.A. Watson, Computational methods for matrix
eigen problems, John Wiley & Sons, New York, 1973.

3. W.W. Hager, Applied numerical algebra, Prentice-Hall, Englewood
Cliffs, N.J, 1988.

4. D.S. Watkins, Fundamentals of matrix computations, John Wiley and
sons, N.Y, 1991.

5. C.F. Van Loan, Introduction to scientific computing: A Matrix vector
approach using Matlab, Prentice-Hall, Upper Saddle River, N.J, 1997.

P. Sam Johnson Vectorization and Re-Use Issues 42/42

